Prediction of longitudinal evolution of Alzheimer’s Disease
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1 Introduction

In the TADPOLE project, we are provided with multi-modal data comprising PET, FMRI measures etc.
for patients at high risk of developing Alzheimers disease. The patients are observed over a period of several
years, so it is a longitudinal setting. The goal is to predict certain biomarkers of the disease (Normalized
Ventricle Volume, MMSE, ADAS13 scores) as well as the disease state (healthy, MCI or Alzheimers) at
future time points using these historic measurements.

We use algorithms designed especially for the longitudinal setting in our prediction framework. Multi-
modality data and longitudinal prediction problems have been dealt with extensively in clinical literature [6]
[1]. Young and Modat [5] developed the multi-kernel SVM method to achieve better performance on both
classification and regression problems for Alzheimers disease. An interesting approach was proposed in [2],
who put a prior on random effects and built a mixed effect model to tackle clinical longitudinal problem
with non-linear functions like sigmoid functions. We experiment with a similar approach for the TADPOLE
dataset. Another algorithm used in practice for repeated measures data is Functional Principal Component
Analysis [3]. We use a version of FPCA that does not require pre-smoothing of observations on our clinical
variables [4] and discuss the results and limitations of our approaches.

1.1 Data description and Preprocessing

The input data comprises bio-markers for 1737 patients evaluated at an interval of 6 months. However,
patients frequently missed follow-ups and even during each visit, not all of the imaging data was necessarily
collected. Thus, there is significant variance in the length of observations of each patient. Further, for each
patient, the recorded observations are often at irregular intervals because of missed appointments.

2 Coding environment

Python 3.5, MATLAB
Packages/toolbox used: NumPy, Pandas, scikit-learn, PACE, statsmodels.api, nlmm (MATLAB)

3 Visualization

As a preliminary step, we visualized the data to develop our prediction algorithms accordingly.

3.1 Correlations between prediction tasks

Figure 1 shows the strong correlations present between the variables to be predicted-the continuous variables
(MMSE and ADASI3 scores) and categorical diagnosis variable (AD/MCI/CN) evaluated at baseline using
our TADPOLE dataset as a preliminary analysis step. These strong correlations suggest that the clinical
scores might be good predictors of the disease state. We exploit this fact later on in choosing the predictors
in our classification algorithm.
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Figure 1: Mutual associations between the MMSE, ADAS13 scores and the diagnosis

3.2 Spaghetti Plots

Spaghetti plots are an important visualization tool for longitudinal data. They can help in visualizing within-
subject (across time) and between-subject variability in the values of the variables of interest.
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They are also very helpful in exploring the overall trends in the data. Looking at the plots, we were able
to conclude that there is an overall tendency towards disease progression in the patients as time goes on,
or equivalently as they age. This is evidenced by how the biomarker values changes across time for most
patients. Ventricular enlargement has been shown to correlated with disease progression, and the spaghetti
plots show that for most patients, the normalized ventricle volume actually increases with time. Similarly,
higher values of ADAS13 and lower values of MMSE are correlated with advancement of the disease, which
is the trend we also observe from the spaghetti plots.

Further, we can visually inspect the nature of the variability for different clinical variables. Normal-
ized ventricles showed little variability across time for most subjects compared to high variability between



subjects. However, ADAS13 and MMSE scores showed both large within-subject and between-subject vari-
ability.

4 Baseline Algorithm

4.1 Implementation

The persistence model or the last-observation carry forward was implemented as the baseline algorithm. In
this approach, we did not use the interpolated observation but instead used the last actually observed value
of each clinical score for every patient.

4.2 Results

The performance of the persistence model was evaluated on the training and test data separately. Mean
absolute error (MAE) and Mean squared error (MSE) were the performance metrics for the continuous re-
gression variables. Classification accuracy, mAUC and balanced class accuracy are reported for the diagnosis
classification.

e Test Data

ADAS13 | MMSE | Ventricle Volume (Norm)
MSE | 42.663763 | 7.405498 | 0.000009

MAE | 4.231707 1.721649 | 0.001767

Classification accuracy

‘ Total ‘ NL ‘ MCI ‘ Dementia
Accuracy | 0.808436 | 0.880342 | 0.725352 | 0.941176

Balanced Classification Accuracy:0.882654

e Training Data

ADAS13 | MMSE | Ventricle Volume (Norm)
MSE | 49.193199 | 8.114596 | 0.000008
MAE | 4.186921 1.716526 | 0.0017

Classification accuracy

‘ Total ‘ NL ‘ MCI ‘ Dementia
Accuracy | 0.867403 | 0.890017 | 0.815657 | 0.979675

Balanced Classification Accuracy:0.819235

5 Proposed algorithms for Regression variables

The key observation in our TADPOLE data-set is the non-independence of data points. Because each subject
contributes multiple time points to the data, these observations are not independent. Hence, to account for
this, we propose to use mixed effects models to make our predictions. We can introduce patient-specific
trends or random effects in our model. In LMMs, we adopt priors on random effects and they are assumed
to be normally distributed. Further, we can also use Non-linear mixed effect models such as sigmoidal
function which might be better suited for biological variables.
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5.1 Linear Mixed effect models

The LMMs are designed especially for longitudinal setting. In our model, we have i=1,..N subjects and each
subject i has n; number of time-points or observations. The response in our LMM #;; is the clinical variable
we are trying to predict (ADAS13, MMSE, Ventricle Volume) for individual subject i at time-point j. The
fixed effect is initially just time, which is also a random effect. This is because we trying to model both
group-specific and individual-specific trends in our model. Mathematically, we can express the model as,

Nij = l‘z;ﬂ + zﬂui

Here, x;; represents the fixed effect and 8 corresponds to the fixed effect parameter. z;; is the vector of
variables having random effects (column of ones added to include random intercepts) and the random effect
1; is assumed to follow a normal distribution with zero and covariance structure given by X,,.

5.1.1 Results

The following table summarizes the Mean squared error (MSE) results obtained using a very simple linear
mixed effect model with just time as a fixed effect. For the MMSE and Ventricle Volume, two random effects
were included for each subject (both slope and intercept). The ADAS13 score showed worse performance
with added slope effect and hence only the random effect of intercept was included in our preliminary
analysis. For an initial comparison, the model was fit on the Input Data and performance was calculated
on the training and test set separately. However, in future, we would develop the model on the Input and
Training dataset and only use the test set for assessing the performance of our model.

Training | Testing | Validation
e Mean squared error ADAS13 48.33786 | 46.69634 | 53.2818
MMSE 7.160737 7.846385 | 6.4264
Ventricle Norm | 8.93E-06 8.44E-06 | 6.31E-06
Training | Testing | Validation
o Mean absolute error ADAS13 4.7762 4.9011 4.9889
MMSE 1.768 1.8756 1.6724
Ventricle Norm | 1.79E-03 1.62E-03 | 1.65E-03

As can be seen in the results above, some of these measures outperform the baseline results. For exam-
ple, the MSE for MMSE in the training dataset predicted using our proposed algorithm outperforms the



corresponding results for the baseline algorithm. Further, the normalized ventricles volume in the validation
dataset is better than the results obtained through baseline. However, this can be further improved and in
the next section, we propose strategies for better predictions.

5.2 Non-Linear Mixed Models

The assumption of a linear trend for biological variables or clinical scores is often not accurate. Sigmoidal
functions might be more suited to model the temporal progression of such variables, assuming that the
values tend to flatten out or reach an asymptote for large times. Therefore, our next approach was to
exploit non-linear mixed models for making predictions at future time points. In this approach, our random
effects included the parameters of the sigmoidal function: the asymptotic response value, the mid-point (or
inflection point) and the scale. So instead of including the fixed effect of time as a linear term, we instead
used the following function for time,

b1

1+ eap(—2-02)

f(@ij) =

where ¢1, @2, ¢3 are the fixed effect parameters of our model and a subset or all of them would also be
included as random effects.

5.2.1 Maximum Likelihood

We estimate the parameters of a non-linear mixed-effect model by maximizing a likelihood function,

p(y]6, 0%, ¥) = / p(y16, 0%, )p(n|)dn

where y is the response data, € is the vector of fixed effects, o2 is the error variance, ¥ is the covariance
matrix for random effects, and 7 is the vector of unobserved random effects. p(y|d,c?, ¥) is the marginal
density of y, p(y|#, 02, n) is the conditional density of y given the random effects 7, and the prior distribution
of i is p(n|¥). This integral contains a non-linear function of the fixed effects and variance parameters
needed to maximize. For non-linear models, the integral does not have a closed form, and needs to be
solved numerically, which involves simulating the function at each time step of an optimization algorithm.
Therefore, the estimation can take a long time for complex models, and initial values of parameters might
play an important role for successful convergence.

5.2.2 Hand-picked features

The fixed covariates we plan to use subsequently for experimenting with our model would be a subset of the
handpicked predictive features listed on the TADPOLE website. These include age, APOE4,RAVLTimmediate,
Hippocampus, WholeBrain, Entorhinal, MidTemp volumes, FDG, AV45 etc. Further, since some of these
are themselves a function of time, we would try two different approaches: (1) Use their baseline value as
constant features for each subject (2) Model them through mixed effect models and predict their values at
future time points concurrently using a multi dimensional output or response variable.

For initial analysis, we included Age and APOE4 as fixed effects. Thus, our non-linear mixed effect
models was as follows,

_ Qi+t psAge + p5s APOE4

f(l”z) e
! 1+ emp(—ix”@jﬂ)




5.2.3 Results

The NLME model had several issues with convergence. We present the results for the ADAS13 score, for
which the model coverged to a stable solution with the chosen initialization.

Sample plots obtained by applying non-linear mixed effect models on the ADAS13 score are shown in
the following figure,
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Results for ADAS13:
e Simple Model

‘ Test ‘ Validation
MAE ‘ 4.7833 ‘ 4.9261

e Added fixed effects

‘ Test ‘ Validation
MAE | 5.8772 | 5.4321

5.3 Functional Principal Component Analysis

We implement another algorithm for improving our results and smoothing out noisy observations: Functional
PCA. It works very similar to multivariate PCA, except for the fact it is designed especially for functional
data. Functional data refers to data where each observation is a curve instead of a point or finite dimensional
vector and so the data is highly correlated and the collection of points display a certain smoothness property.
Thus, longitudinal data essentially comes in the category of functional data because each patient displays
a curve (for each clinical score). However, whatever we observe are discrete realizations from this curve for
all subjects. The goal of FPCA is to find dominant modes of variation in the data and express each curve
(corresponding to each subject) as a linear combinations of certain eigenfunctions (basis curves).

For implementing FPCA, we used the toolbox PACE - Principal Analysis by Conditional Estimation. Since
we have very sparse observations for each subject, this algorithm is more suited because it doesn’t require
obtaining smooth estimates of the curve before identifying principal components. The number of principal
components are chosen to explain a fixed proportion of variance in the data (set to 0.9). Sample fitted FPCA
curves are shown in the following figure.
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5.3.1 Results

Overall, Functional PCA showed improved results for MMSE and ADAS13. However, linear mixed-effect
models significantly outperformed functional FPCA for the normalized Ventricles volumes. The results for
FPCA are summarized in the table below.

e Validation Results

| ADAS13 | MMSE | Ventricle Volume (Norm)
MAE | 4.70693577 | 1.77283048 | 0.00554082

o Test Results

| ADAS13 | MMSE | Ventricle Volume (Norm)
MAE | 4.3155178 | 1.7578174 | 0.0049772

6 Classification

6.1 Implementation of Decision Trees

The TADPOLE project includes designing a classification algorithm alongside the regression models to be
able to predict the disease state of the patients in their future visits. As explained in the previous sections
the regression values show correlations within each other and with the disease states. Therefore, our classi-
fication model utilizes these relations and the previous disease states as inputs.

Since the visualizations showed different correlation trends between the regression values, the first approach
to the classification problem was using k-means clustering. The algorithm presented several advantages
such as being very straightforward to implement and requiring a significantly short training time. Although
several distance measures were used (eg. Square Eucledian, cosine and correlation etc.), the values were
not linearly separable in 2D or 3D space (combinations of several variables). This required using kernel
functions, which had to be manually evaluated.



The non-promising results with the k-means clustering algorithm and the strong correlation between the
last disease state and the future disease states (referencing to the accuracy in the persistence baseline al-
gorithm) created a need for an algorithm that could use the classification parameters with the regression
parameters. Therefore, we decided to implement Decision Trees. The Decision Tree algorithm was also
straightforward to implement and required very little training time.

The algorithm was implemented on MATLAB, trained on the input data with ten folds cross-validation
method and evaluated on the test and the validation data (Appendix section: Classification). During train-
ing, only the last observed regression values: MMSE, ADAS13, Ventricles, Age and the previous disease
state were utilized for each patient for classifying the last observed disease state. The depth of the Decision
Tree was limited to four splits, which gave better results than more complex structures due to increased
flexibility and mitigated over-fitting problem.

6.2 Results

The resultant tree with four splits is shown in the following figure. The Decision Tree puts the most emphasis
on the ADAS13 score and the last disease state which are depicted as x1 and x5.
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Test Data Validation Data
Accuracy for all data 81 percent 72 percent
Maximum accuracy bu disease state | 90 percent (MCI) | 86 percent (AD)

As previously mentioned the Decision Tree was evaluated for the test and the validation datasets. The
results are shown in the Table. The Tree gives 81 percent accuracy on the test dataset with the highest
accuracy of 90 percent in detecting MCI patients. The accuracy for the validation data is 72 percent and
the highest accuracy of 86 percent is in detecting AD patients. The results prove that the Decision Tree is
a suitable classification model for the TADPOLE dataset.
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Limitations

The aforementioned algorithms couldn’t produce a very significant improvement from the baseline. This
might have occurred due to the following limitations of our approaches:
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e Linear models are not the best models for biological variables as they can be inaccurate if we record
data for patients over long intervals. One should expect the values for these variables to saturate over
time, a phenomena that is not captured by linear models.

e Finding the optimal solution for non-linear models is difficult because it is very sensitive to the ini-
tialization. Better initializations can help in avoiding local maxima and improve convergence, however
the approach overall is brute-force.

e Functional PCA works well but representing each subject as a linear combination of a very few eigen-
functions might be tricky because there is a great variability in trends between subjects.

e Decision Trees used the forecasts of the clinical variables to predict the disease state. However, these
themselves are not completely accurate and hence could significantly impact the performance of the
classification algorithm.
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