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Abstract—Machine learning techniques hold significant poten-
tial to detect seizures from EEG data. This is consequential,
since timely seizure detection is essential for the success of
responsive neurostimulation therapies in patients with drug-
resistant epilepsy. In this paper, we briefly review the literature
for seizure detection using EEG data and recent advances in the
field. We further describe the techniques implemented by our
team for the ECE5040 Kaggle Challenge and discuss the results
obtained using different combinations of features and algorithms
on the dataset.

Index Terms—Machine learning, seizures, epilepsy, neurostim-
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I. INTRODUCTION

Patients with epilespy frequently develop intuitions as to
when a seizure is imminent. This allows them to prepare,
rendering their environment safer for them and others around
them. For example, it is incredibly dangerous for a patient to
have a seizure while driving on the highway. Warning that a
seizure is going to occur would give them time to pull over
and come to a stop. However, much of the time this intution
fails to emerge, and when it does it is innacurate or provides
insufficient warning time. A portable device that uses readily
accessable signals could be a path to early warning as well as
a way for a stimulator to inject current and stop the seizure
form ever occuring.

EEG signals require only the placement of non-invasive
recording electrodes on the scalp. Many publicly available
EEG devices are emerging that do this in a low energy, subtle
form factor that would increase patient compliance. Therefore,
there is a clear path to deployment of a device that classifies
seizure and pre-seizure activity. The first step in development
of such a device would be the software that can recieve EEG
signals and determine when a seizure will occur. The data and
labels provided by the ECE5040 Kaggle Competition was a
first step towards creating that capability.

In the ECE5040 Kaggle Competition, we are provided with
EEG clips of 7 patients during ictal and non-ictal periods.
Our goal is to classify the two categories, with submissions
assessed on the AUC of the Receiver Operating Characteristic
(ROC) curve. We extract features previously reported to be
indicative of seizures for our prediction framework.

We adopt a patient-specific approach, wherein the classifier
is trained separately for each subject. The parameters of the
classifier are, however, kept the same across subjects to prevent
overfitting and to gain a true assessment of the generalizability
of our model to previously unseen subject data.
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II. DATA
A. Data description

Each clip contains 1s of EEG recording across differing
number of electrodes for each patient, in the range of .

2 of the 7 subjects had the EEG recordings sampled at SkHz,
while the rest had data sampled at S00Hz.

B. Data Visualization

As a preliminary step, we visualized the data to gain a
better understanding of how EEG activity is altered during
seizures.

Figure 1 depicts a general classification routine. The
rest of the paper is outlined as follows: Section III discusses
the data preprocessing steps and the relevant features
considered in our model. Section IV described the various
classification algorithms implemented. Section V presents the
results obtained using the different combinations of features
and algorithms. Finally, in section VI, we discuss the results
obtained using different methods and why we believe certain
techniques failed to yield good results.
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Fig. 1. Classification Routine

III. PREPROCESSING AND FEATURE EXTRACTION

A crucial step in seizure detection is the selection or
extraction of appropriate features. Traditionally, the features
extracted from EEG signals are classified into two broad cate-
gories: Time-domain features and Frequency-domain features.

A. Time-domain features

Several time domain features have been proposed in liter-
ature for seizure detection. Commonly used features include
line-length, signal variation or standard deviation, energy etc.

Previous studies suggest that epileptic seizures are char-
acterized by hypersynchronous states. Correlations provide a
significantly rich feature space for machine learning models



to learn the discriminating data patterns across categories.
Thus, we included the correlation structure of multi-channel
intracranial EEG into our model. For n channels, this gives
n(n-1)/2 correlation values after excluding the diagonal entries
and extracting the upper triangle of the symmetric correlation
matrix.

Eigenvalues of the correlation matrix further reflect ad-
ditional metric compactly representing some aspects of the
correlation structure [7]. Typically, the magnitude of these
eigenvalues represents the correlation values in uncorrelated
directions known as eigenvectors. We concatenated the n
eigenvalues of the nxn correlation matrix with the existing
features, hoping that it captures another quantity predictive of
seizures.

For time domain features, we also experimented with several
preprocessing steps like downsampling the data or applying
dimensionality reduction on the correlation values using Prin-
cipal Comopnent Analysis (PCA).

We also observed a clear distinction between correlation
patterns during the ictal and non-ictal periods visually, as
shown in Figure 2
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Fig. 2. Correlation structure of time series across channels

B. Frequency domain features

Several frequency domain features have been previously
shown to predict seizures. These include power spectral den-
sity, ratios of power spectral density, mean phase coherence
etc. Of these, the power spectral density (PSD) features are the
most frequently used predictors of seizures. Previous research
has shown that significant changes occur in the spectrogram
during seizures.

FFT is commonly used to extract the content in different
frequency bands of the signal. Since the signal duration is s,
we can extract frequency features at a resolution of 1 Hz. In
accordance with previous research, we expected the frequency
content in alpha, beta and lower gamma bands to be useful for
seizure prediction. Omerhodzic et. al. [4] showed that energy
distribution in delta (0.5-4Hz) and theta (4-8 Hz) bands in-
creases during seizures, whereas the alpha (8-12 Hz), beta (12-

25 Hz) and gamma (typically 25-100 Hz) bands experience a
lower energy distribution. We confirmed a similar trend using
our own visualizations of spectral power, as shown in Figure 3.
Most studies focus on the 1-60 Hz frequency range. Since the
optimal frequency range for our classification task is unknown,
we experimented with 4 frequency ranges: (1-30) Hz, (1-45)
Hz, (1-60) Hz and (1-100) Hz. Frequency-domain features
extracted from all the channels are concatenated together with
other features to test the final input for classification.

Rather than feature selection, we proceed with the strategy
of feature elimination. We first include all the proposed fea-
tures in our model and then remove each of these sequentially
to estimate the importance of feature subsets.
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Fig. 3. Spectral Power calculated using FFT

IV. CLASSIFICATION ALGORITHMS
A. Support Vector Machines

SVMs optimize for a hyperplane with maximum margin
between the output classes. It is one of the most commonly
used linear classifiers for seizure detection. Mathematically,
SVMs minimize the following loss function to get the optimal
weights 6*={w*, b*}.

n
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There are several variants to the above loss function. For
example, the squared hinge-loss (i.e. the first term) can be
replaced a hinge-loss or the regularization term (i.e. the second
term) can be an L/ penalty instead of L2. We use the above
loss function to compute our predictions.

B. Logistic Regression

The logistic regression classifier is used to estimate the
probability of a binary outcome by fitting a linear regression
model on the input features. In this model, the log-odds of
the output prediction are assumed to be a linear function of
the inputs. Mathematically, logistic regression minimizes the



following loss function problem to find the optimal weight
parameters 6*={w*, b*},
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C. Random Forests

Random Forest Classifiers are ensembles of decision trees,
with each tree trained on a random subset of the training data.
Decision tree classifiers build a flowchart of decision rules
based on feature attribute values. For each test sample, the
tree is traversed following these rules at each internal node and
the final classification label is assigned at the leaf node. Each
subset for training individual decision trees is selected using
sampling with replacement from the training data. This model
averaging strategy helps in preventing overfitting, and yields
reasonable probability estimates for the classes. Significant
tuning parameters for random forests include the number of
individual estimators (decision trees), maximum number of
features to use during split searching, maximum depth of the
tree, minimum samples required for internal node splitting etc.
We speculated that number of individual estimators to have
the most significant effect on AUC, and hence focused on
tweaking this parameter.

D. Gaussian Naive Bayes

The Gaussian Naive Bayes algorithm seeks to find an
optimal decision boundary between the binary classes under
the assumptions that the data is normally distributed and the
covariance matrix of the features is diagonal. This algorithm
assumes conditional independence between features, which
might be a strong assumption in our case. However, since it is
a probabilistic classifier, we decided to test the model on our
dataset.

E. Majority Voting

We also employed another strategy by building a majority
voting ensemble of these individual models. This scheme
weighs the binary outputs of individual classifiers equally to
generate a final probability for the classes.

Implementation toolkit: scikit-learn Coding Language:
Python

V. RESULTS

We consider Support Vector Machines and Logistic Regres-
sion as a classical machine learning baseline. Although the
SVMs can be tweaked to yield probabilities for the classes
instead of categorical predictions, the interpretation of this
continuous metric as probability is not straightforward. Fur-
ther, we observed that logistic regression yielded probabilities
very close to the binary values of probability, indicating
that the classifier becomes very confident in its prediction.
This could result in negative effects on the AUC when the
categorical predictions are not very accurate. Subsequently, we
proceeded with other classifiers like Random Forests, which
give more realistic and conservation probabilistic predictions.

A. Table

The following table briefly summarizes results obtained
using the main models discussed in this paper.

Prediction Results
Method AUC
FFT+Random Forest (4000) 0.89028
FFT+Correlation+Eigenvalues (unscaled | 0.9199
time series)+Random Forest
FFT+Correlation+Eigenvalues+Logistic 0.82642
Regression
FFT+Correlation+Eigenvalues+Random 0.93351
Forest (500)
FFT+Correlation+Eigenvalues+Random 0.93478
Forest (4000)
FFT+Correlation+Eigenvalues+Voting 0.81156
FFT (1-100Hz)+Correlation+Eigenvalues+ | 0.84829
Random Forest (4000)

B. Results using Validation Data

In order to assess our algorithms and features without
having to submit our predictions to Kaggle, we split the given
training data into a training and validation set. Particularly,
we randomly select 20% of the data for each subject and use
it for training, while computing performance metrics on the
validation set. Figure 4 depicts the ROC curve for all subjects
using our best model, i.e. Random Forests trained using all
the aforementioned features. Across all subjects, we achieved
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Fig. 4. Receiver Operating Characteristic (ROC) Curve

a sensitivity of 100% and specificity of 99.93% using our
validation data. We observed that the performance obtained
using validation splits was significantly higher compared to
the independent test set on Kaggle and are still trying to
understand the gap in performance.

VI. DISCUSSION

The best model was obtained using a Random Forest with
large number of estimators (4000 Decision Trees) and the



combination of all aforementioned features, which include
spectral power components in the frequency range 1-45 Hz,
the time-series correlation values across all possible pairs of
channels and finally the eigenvalues of this correlation matrix.
We observed that inclusion of spectral power components
beyond 45 Hz actually decreased our prediction accuracy
(and AUC). We speculate this might be occurring because
of possible confounds introduced by the broadband gamma
components.

We also assessed the impact of dimensionality reduction
before supervised learning on the final prediction precision.
However, in our case, dimensionality reduction using PCA
(with 500 components) before training the Random Forest
Classifier actually decreased the AUC from 93.35% to 81%.

We also observed the impact of preprocessing techniques
on the features and resultant classification performance. Par-
ticularly, we observed that resampling the time series of each
channel to fewer samples (500-1000) actually shows better
performance. This might help get rid of spurious time series
correlations to yield more reasonable estimates of correlations
and eigenvalues. Further, we also observed that scaling the
time series data

Another innovative approach would have been to identify
the channels localized to parts of the brain most affected by
seizures. Channel selection can help build a robust prediction
model insensitive to noise in EEG channels unaffected by
seizures.

Another limitation of our approach is that we discarded
high frequency spectral features. For patients sampled at SkHz,
inclusion of very high frequency components (> 1000 Hz)
could lead to better predictions. Several studies have shown the
prevalence of high-frequency oscillations in epileptic patients
during seizures.

Furthermore, in order to capture changes in signal frequency
content over time, we could have used sliding windows and
short-time Fourier Transform. This would yield dynamic spec-
tral features rather than static features from the 1s clip, which
might help improve the prediction accuracy. The dynamics of
the correlation structure itself have previously shown to be
predictive of seizures ( [7])

In the development of this machine learning system, it was
notable the degree to which the addition and subtraction of
particular extracted features were impactful in our final AUC
result. For example, using FFT and a Random Forest had
an AUC of .89, while adding correlation and Eigenvalues
increased that to .91. This is a common feature of relatively
simple machine learning systems, where the selection of
extracted features is sometimes more important than the ML
algorithim chosen. This means that the features we were
selecting for were specific to this dataset and could potentially
not generalize well to other patients, though we did use a
robust validation scheme.

In order to improve the generalizability of seizure detection,
we are interested in future work in using Deep Learning.
Though feature extraction is used in DL, it is notable in that
it can recieve an entire unfiltered dataset and create accurate

results. This would allow a system to observe many possible
features and select the ones most valuable for classification for
each patient. There are many different ways we could recon-
figure the data to be fed into a DL classifier. We would use
a Recurrent Neural Network or a Long Short Term Memory
network and directly feed in the signals themselves, as well
as the FFT or the eigenvalues. There has also been work on
manipulating EEG signals into a 2 dimensional image and
applying a Convolutional Neural Network with high fidelty
results. [8] The downside of a the Deep Learning approach
would be the high likelihood that the Neural Net itself would
have to be hosted on a server and not on chip, increasing
latency.

Furthermore, the use of Deep Learning on all of the
available signals may potentially inform new physiological
discoveries in Epilespy. Interrogating the network may provide
information about patterns we were not previously aware
of, which could inform future devices. In classical machine
learning this would not be possible as we a-priori select
the features and connections the system is using to classify
seizures.
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