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Abstract

Nonparametric or infinite-dimensional counterparts of Hidden Markov Mod-

els have recently shown great promise for segmenting temporal sequences with

an unknown number of components. In this technical report, I will focus on the

first paper describing infinite-state hidden markov models (iHMMs)[1], while

briefly describing the recent developments in modelling over this traditional

scheme. This is followed by a discussion on the evolution of inference algorithms

for nonparametric HMMs such as the iHMM and its well-known extension-the

Hierarchical Dirichlet Process-Hidden Markov Model (HDP-HMM).

1 Introduction

Hidden Markov Models are powerful models for describing sequences, such as speech,

genomes, proteins or stock values over time. A major limitation of classical HMMs is

that the model is constrained to have a finite number of states beforehand. Domain

knowledge is mostly not adequate to specify the dimensionality of the latent space,
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and most applications rely on ad-hoc approaches to fix this cardinality. While model

selection techniques exist for standard HMMs to determine the number of states, the

convergence and divergence among these methods is little understood. Moreover, in

certain cases, the cardinality of hidden states and its uncertainty may itself be the

variables of interest for inference. This makes nonparametric extensions of HMMs

particularly attractive.

Bayesian nonparametric extensions of popular models, like topic models or fi-

nite mixture models, have proven promising for diverse statistical inference problems.

These methods overcome the limitations of models with finite parametrizations, by

allowing the effective cardinality or parameter size to increase as more data is ob-

served. Recently, nonparametric extensions of Hidden Markov Models have garnered

significant attention. This modelling scheme is suitable for sequential data encoun-

tered in a variety of real-world systems, which may not be well expressed with a

finite number of hidden states. Nonparametric HMMs are derived from the theory of

dirichlet processes (DPs). Using DPs, the unbounded parameters of these models can

be implicitly integrating out to yield a finite number of hyperparameters. Learning

and inference procedures defined for classical HMMs are not amenable to nonpara-

metric HMMs, and several papers have lately derived efficient and scalable inference

schemes for these models [2, 5, 3]. This has enabled novel applications of nonpara-

metric HMMs in challenging problems, like speaker diarization, motion segmentation,

modeling of genetic recombination etc.

The report is organized as follows: Section 2 introduces the Hidden Markov Models

and Hierarchical Dirichlet Processes. Section 3 presents their joint treatment in the

iHMM and its extensions. Section 4 discusses the inference algorithms for iHMM and

HDP-HMM. Section 5 discusses the applications, limitations and future directions.

Finally, section 5 presents the summary.
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2 Preliminaries

2.1 Hidden Markov Models

The HMM is widely used for segmenting sequential data encountered in various do-

mains such as speech recognition, genomics, stock markets, machine translation etc.

It models a Markov process where states {s1, s2, ...sT} are not observed; what is

observed are entities {y1, y2, ....yT} generated by these sequence of discrete states.

Conditioned on this state sequence, the observations are assumed to be independent.

An HMM is described by three probabilities:

• Transition Probability: Represents the probability of transitioning from state

sj to sk : P(sk|sj)

• Emission Probability: Represents the probability of generating observation yk

from state sj: P(yk|sj)

• Starting Probability: Represents the distribution for the initial state: P(s1)

A desirable property of classical HMMs is that the probabilities of state sequence

given observations can be inferred using an efficient dynamic programming algorithm,

known as the forward-backward algorithm. The parameters, i.e. the aforementioned

probabilities, can be optimized with the Maximum Likelihood Estimation (MLE) cri-

teria. MLE estimates are obtained within an expectation-maximization (EM) frame-

work, known as the Baum-Welch algorithm, where expectations are computed with

respect to the conditional distribution of hidden state sequence given observations

P (s|y).

Existing modelling and inference scheme for HMMs suffer from two key limitations.

First drawback is that standard HMMs require us to fix the cardinality of hidden
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states in advance. A second limitation of MLE procedure itself is that it is prone to

overfitting/underfitting.

2.2 Dirichlet processes

Dirichlet process is central to Bayesian nonparametrics. It defines a probability mea-

sure on distribution functions, where each draw from DP is a discrete random dis-

tribution itself. DPs are defined using a base distribution (H) and a concentration

parameter (α). Formally, consider a distribution H over Θ and a parameter α ∈ R+.

Let (S1, S2, ...Sr) be any finite measurable partition of Θ. Then, G is a DP with base

distribution H and concentration parameter α, written as G ∼ DP (α,H) if,

(G(S1), G(S2), ..G(Sr)) ∼ Dir(αH(S1), αH(S2), ...αH(Sr)) (1)

2.2.1 Mixture models

DP is commonly used as a prior in mixture models with unknown or countably infinite

number of components. First, consider the following Bayesian mixture model with a

finite number of K components,

zi|π ∼Multinomial(π), θi|H ∼ H

π|β ∼ Dir(β/k, ...β/k), xi|zi, {θi}∞i=1 ∼ F (θzi)

Here,{x1, x2, ...xN} are the N observations which are modelled using discrete indicator

variables {zi} taking on values {1,...K}. The mixing proportions π are assigned a

Dirichlet prior with pseudocount hyperparameter β. H defines the prior distributiion

over the parameters {θk} of the component likelihood F.
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In the limit K →∞, the conditional probability of indicator variables after inte-

grating out the DP prior is given as,

P (zi = k|z\i, β) =
N−d,k

N − 1 + β
N−d,k =

N∑
l=1,l 6=i

δ(zl, k)

for every represented cluster k. Uninstantiated clusters are created with the re-

maining probability, β
n−1+β . The infinite parameters can thus be integrated out so

that probability of indicator sequences is defined using the finite number of counts

(as N is finite). Further, it can be seen that β has a special meaning – it reflects

the tendency of the model to generate new components. DP prior is widely used

in bayesian nonparametrics because of its infinite dimensionality, i.e., its ability to

capture infinite components in a mixture model. It displays a bias towards existing

hidden states, in a ”rich get richer” fashion. Mixture models help to understand how

DPs can be seen as an infinite dimensional generalization of Dirichlet distributions.

2.2.2 Stick breaking construction

Stick-breaking is a popular construction for DPs that helps to see how a DP defines

distributions over discrete probability measures. Random draw from a DP, G0 ∼

DP (α0, H), can be expressed as [8]:

G0 =
∞∑
k=1

πkδθk , θk|H ∼ H, δ : Indicator function (2)

Here, the proportions πk can be described using an iterative stick-breaking process

dependent on the concentration parameter α0. Suppose there is a stick of unit length.

Let βk ∼ Beta(1, α0) be the fractions we break from the remaining part of the stick

at each iteration. πk are then the fractional lengths from the resulting divisions of

5



this stick, denoted as π ∼ GEM(α0). Mathematically, this is expressed as,

πk = βk

k−1∏
c=1

(1− βc) (3)

2.3 Hierarchical Dirichlet Processes

Consider a scenerio where we have groups of data, where each group can be modelled

using distinct components or clusters. It may be desirable to share clusters across

these groups, for example, when groups are produced by related or dependent tasks.

This situation can be handled by Hierarchical Dirichlet Processes (HDPs) using a

shared probability measure across groups. Formally, HDP first defines a base mea-

sure G0 with a DP prior, G0 ∼ DP (α,H). Group distributions {G1, ...Gj, ..GJ} are

then sampled from a global DP prior that uses the former base measure as the base

distribution, Gj ∼ DP (αj, G0). The use of a central base measure enables group

distributions to share components.

3 Models

Hidden Markov Models can be considered a dynamic variant of the finite mixture

models discussed above. This makes DPs a natural choice for extending HMMs to

model infinite states. The latent states can be equated with components or clusters

in the original DP mixture model formulation. It is important to note that HMMs

involve a group of mixture models, each group denoting a distinct value of the current

state. Each row of the transition matrix in HMMs, i.e., P (st+1|st) can be modelled as

a DP. Modelling each row using independent DPs is inadequate in HMMs for reasons

discussed below. As it turns out, the use of hierarchical DPs alleviates this problem,

thereby enabling inference in nonparametric HMMs.
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3.1 Why do we need a hierarchy?

HDP forms the building block of HMMs. At the fundamental level, a hierarchy allows

us to couple the transition dirichlet processes from different states. This is important

because in the absence of coupling between different states, the set of states that are

transitioned to from state a, for example, would not be the same as the set of states

transitioned to from state b. Thus, the sequence will never visit the same state twice

with this mechanism.

3.2 Infinite HMM

Beal et al.[1] proposed a two-level hierarchical model for the transition dynamics in

HMMs, known as the infinite HMM (iHMM). Conditional on the current state (st),

the next state (st+1) is modelled using a DP with concentration parameter β.

P (st+1 = j|st = i, n, β) =
nij

K∑
l=1

nil + β

, nij =
t−1∑
t′=1

δ(st′ , i)δ(st′+1, j) j ∈ {1, ..., K}

(4)

This top level DP thus favors typical trajectories, while allowing novel transitions

with a finite probability β
K∑
l=1

nil+β

. With this probability, the transitions are controlled

by a second DP with a different concentration parameter γ.

P (st+1 = j|st = i, n0, γ) =
n0
j

K∑
l=1

n0
l + γ

(5)

This DP and its counts n0 are known as the oracle. Here, n0
l represents the

number of times the state l was transitioned to from an oracle DP. The oracle counts
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are updated separately from the transition counts, n, of the first-level DP. Under the

second-level DP, a completely new state is transitioned to with a finite probability of

γ
K∑
l=1

n0
l +γ

.

The model also introduces an interesting self-transitioning bias by initializing the

self-transition counts to a finite value denoted by α. The transition dynamics in

this model are thus completely controlled by three parameters: (a) α controls the

probability for self transitions, (b) β controls the sparsity of transition matrix by

influencing the tendency to explore new transitions, and (c) γ controls the expected

number of states by influencing the probability with which a new states is sampled.

These three parameters represent the priors for the transition dynamics, and are

capable of creating a wide variety of state trajectories.

The emission mechanism is modelled analogously, except that there is no notion

of self transitions. Thus, there are only two parameters for describing emissions {

αe, βe}.

3.3 HDP-HMM

The former approach is not strictly a hierarchical DP in the bayesian sense because

the DP parameters for all groups (i.e., each row of the transition matrix) are not

derived from a common base distribution. Rather, the hierarchy is imposed through

a coupling between transition DPs using oracles. Teh et al.[2] introduced a formal

Hidden Dirichlet Process - Hidden Markov Model (HDP-HMM), that has now been

widely applied across various domains, such as speaker diarization[4], visual scene

recognition[6], gene expression [7] etc. Their generative approach for different vari-

ables is formulated mathematically using the stick-breaking construction,
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Figure 1: A schematic of HDP-HMM

Stick-breaking prior: β|γ ∼ GEM(γ)

State-specific transition distribution: πk|α0, β ∼ DP (α0, β), k = 1, 2....

State-specific emission parameters: θk|H ∼ H, k = 1, 2....

Hidden states: st|{πk}∞k=1, st−1 ∼ πst−1 , t = 1, ..., T

Observations: xt|st, {θk}∞k=1 ∼ F (θst) t = 1, ..., T

The generative process for HDP-HMM is depicted in Figure 1.

3.4 Sticky HDP-HMM

Fox et al. [3] propose an easy extension of the HDP-HMM to incorporate a self

transition bias, similar to Beal et al. [1]. They show that in the absence of an extra
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self transition bias, the model creates redundant states with rapid transitions among

them. To combat this, they propose the following modification to the transition

distribution,

β|γ ∼ GEM(γ)

πk|α0, β, κ ∼ DP (α0 + κ,
α0β + κδk
α0 + κ

), k = 1, 2...

Intuitively, this increases the probability of self transitions by an amount proportional

to κ. Their model, known as the sticky HDP-HMM, is especially useful for data

with state persistence such as audio recordings. This approach showed impressive

performance in speaker diarization.

4 Inference and learning

In the terminology of HMMs, inference refers to deriving the hidden state sequence

given model parameters, whereas learning corresponds to finding the parameters of

the probability distributions (transition or emission distributions). As described

above, inference in classical HMMs is based on an efficient dynamic programming

algorithm, whereas the learning procedure relies on an expectation maximization al-

gorithm. Inference in nonparametric HMM is not as straightforward. Most current

learning and inference schemes for nonparametric HMMs are based on Gibbs sam-

pling.

4.1 Approximate Gibbs sampling

The original implementation of iHMM relies on an approximate Gibbs sampling pro-

cedure for both learning and inference. Instead of computing full conditionals, Beal
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et al. [1] proposed an approximate inference strategy for iHMMs where the sample

updates for state st are based only upon the neighbors (st−1, st+1, yt) and transi-

tion/emission counts after excluding the counts contributed by st. This reduces the

computational operations to be linear in the number of time points. The sampled hid-

den state sequence are used to obtain the posterior probabilities, P(v|{st}Tt=1) of the

hyperparameters v, where v = {α, β, γ, βe, γe}. The values of these hyperparameters

are updated based on their maximum a posteriori (MAP) estimate.

4.2 Gibbs sampling with auxiliary variables

In contrast to iHMMs, the HDP-HMM defines transitions using well-defined under-

lying probability measures or priors, thereby enabling a full posterior bayesian infer-

ence. In the HDP-HMM formalism, Teh et al. [2] propose an efficient Gibbs sampling

technique with the use of auxiliary variables. Their sampling scheme is general for

all HDPs. The variables of interest in HDP-HMM are v = {{st}Tt=1, {πk, θk}Lk=1, β}.

The authors first propose to use a finite representation of the posteriors. Only the

instantiated components K out of the possibly infinite L components are explicitly

modelled, whereas all the the unrepresented components are pooled together as a sin-

gle variable u. Thus, assuming the stick-breaking weights are arranged in order, we

can set βu =
L∑

k=K+1

βk and take β = (β1, ..., βK , βu). In this scenario, we need to only

record the transition counts njk for 1 ≤k≤K. Since π ∼DP, it can be integrated out

from the conditional probabilities. The analytical expressions for the remaining con-

ditional are described below. For notational convenience in subsequent formulae, the

superscripted elements in front of the minus sign represent indices that are excluded

from the corresponding sequence.

• Sampling θk: The posterior of θk given { st}Tt=1, {xt}Tt=1 and the prior H is given
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as,

P (θk|{st}Tt=1, β, {xt}Tt=1, θ
−k) ∝ H(θk)

∏
t:st=k

F (xt|θk)

This posterior is directly used for sampling {θk}Kk=1

• Sampling s: Conditional probability of st for posterior sampling is given as,

P (st = k|s−t, β, {xt}Tt=1, {θk}uk=1) ∝ (α0βk + n−tk )F (xt|θk), k = 1, ..., K, u

• Sampling β: An auxiliary variable method is used for sampling β. Formally, an

auxiliary variable m is introduced that describes a backward message pass from

state st to st−1,

mt,t−1(st−1) ∝
∑
st

P (st|πst−1)F (xt|θst)mt+1,t(st) t ≤ T

This variable allows sampling of β as β ∼ Dir(γ/L+m.1, ..., γ/L+m.L)

5 Summary

Nonparametric HMMs are particularly useful because of their flexibility and the abil-

ity to capture rich unconstrained structures in the sequential data. This is also

demonstrated by their ability to accurately predict ground truth temporal segmenta-

tions in various application domains. Inference in nonparametric HMMs is challenging

and most current methods rely on Gibbs sampling for both parameter learning and

state inference. For time-series data, Gibbs sampling procedures generally show poor

mixing with very slow convergence rates due to strong dependencies between consec-
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utive time steps. A few inference methods have been explored as an alternative to

Gibbs sampling in the infinite-state HMM setting. Stochastic and memoized vari-

ational inference methods recently demonstrated the scalability of these models to

handle large sequences [5].

6 Notations

Dir(β) Dirichlet distribution with parameter β

DP(α,H) Dirichlet Process with concentration α and base distribution H

δθk Indicator function: δθk(x) = 1 when x = θk, 0 otherwise

GEM(γ) Stick-breaking construction with parameter γ
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