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ABSTRACT

Recently, there is an increasing need to understanding the internal representation
of deep neural networks (DNNs) in order to shed light into their learning dynam-
ics. One way to accomplish this task is to measure the mutual information (MI)
between the input data and the latent space. It has been shown that both MI in
stochastic DNNs and binned MI in deterministic DNNs tracks the amount of clus-
tering in the latent space. As a result we propose to use density-based spatial clus-
tering of applications with noise (DB-SCAN) to directly study the geometry of the
latent space. By creating a graphical representation of the space, we remove the
dimensional dependency when estimating the MI. The computational complexity
of DB-SCAN is at most O(n2). We demonstrated our method in Shwartz-Ziv &
Tishby (2017) and MNIST dataset. Our estimates of MI closely follow the trajec-
tory of binned MI while taking significantly less computational time. We hope to
facilitate research techniques in estimating MI on DNNs with real-world datasets
and probe open questions about the relationship between compression/clustering
and generalization.

1 INTRODUCTION

Recently, there has been an increasing interest in measuring the mutual information I(X;Tl) be-
tween the input data X and the hidden representation Tl at a layer l of a deep neural networks
(DNNs). The sparked interest was partly due to the introduction of information bottleneck frame-
work to understand DNNs (Shwartz-Ziv & Tishby (2017)). The authors of this work proposed
that the goal of DNNs is to optimize the information bottleneck (IB) or in other words, an optimal
trade-off between compression and prediction of label Y , as measured by I(X;Tl) and I(X;Y )
respectively. Although most claims by Shwartz-Ziv and Tishby have been challenged and refuted
(Saxe et al. (2018); Goldfeld et al. (2019b)), their idea of using mutual information to study DNN
remains.

For most practical problems, mutual information does not have an analytical solution. In addition, its
sample complexity scales exponentially with the dimension of the variables (Goldfeld et al. (2019a)).
Most importantly, for a DNN that has a deterministic and injective mapping, measuring I(X;Tl)
is meaningless. In this scenario, it can be mathematically shown that I(X;Tl) is constant if X is
discrete. On the other hand, I(X;Tl) is infinite whenX is continuous. Both (Shwartz-Ziv & Tishby
(2017); Saxe et al. (2018)), used a binning approach on the representation of the DNN I(X; Bin(Tl))
to overcome this hurdle. However, it is important to note that MI measures computed with binned
representations induce an artificial non-injective mapping that doesn’t reflect the true operation of
these DNNs. Further, with this non-injective mapping, this quantity now depends on the system
parameters. So what they are measuring in fact is a system-dependent approximation for a system-
independent quantity.

Furthermore, this technique is very sensitive to the bin size and can cause errors in the estimation
as shown by Goldfeld et al. (2019b). In the same work, the authors also proposed a rigorous frame-
work to estimate I(X;Tl) through the addition of Gaussian noise in the latent representation of the
DNNs. Their approach introduces system dependency into the mutual information measurement.
In other words, changing the variance of the noise influences the DNN prediction, thereby allowing
Goldfeld et al. to investigate what the mutual information is capturing within the network. They
found that both estimation of I(X;Tl) in a noisy network or I(X; Bin(Tl)) in deterministic net-
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works, track the amount of clustering in the the latent representation. Further, they attributed the
intriguing observations of compression in DNNs, as reported by Schwarz-Ziv and Tishby, to this
geometric phenomenon of clustering. Compression refers to the phenomenon of decrease in MI be-
tween the input and internal representations over the course of training, and was initially proposed
as a plausible causal factor for the generalization ability of DNNs.

As a result, in order to gain more insight into the DNN’s representation, we need to study the ge-
ometry of the latent space distribution. Through this analysis, we hope to facilitate future research
into the dynamics of DNN learning. To this end, we propose to study the clustering of data points in
the latent space through the use of density-based spatial clustering of applications with noise (DB-
SCAN, Ester et al. (1996)). By using a distance threshold, we can connect points in the latent space
in order to form a graphical representation of the data. DBSCAN can then be used to find clusters
within the graphs. Finally, by measuring how clustered the data points are, we can have a proxy for
mutual information. The advantage of working with graphs is that we can remove the dependency of
dimension of the latent space in estimating the mutual information, allowing us to start investigating
more real-world datasets. We applied our method to Shwartz-Ziv Tishby’s network Shwartz-Ziv
& Tishby (2017) and the MNIST digits dataset. Our estimate of mutual information shows similar
trend to that of Goldfeld et al. (2019b) while taking much less computational time.

2 METHODOLOGY

Figure 1: Illustration of DBSCAN with 4 minPts. Point c is a core point. The ε-radius for some
points are shown as dashed circle. Point q is directly reachable by c. Whereas z is reachable by c.
Outliers cannot be reached by core points and does not minPts, they are displayed as o1,2 Different
colors represent distinct clusters.

In order to estimate mutual information I(X;Tl) in a meaningful manner, we can add noise into the
representation of the neural network (Goldfeld et al. (2019b)). This measurement, as shown previ-
ously, tracks the degree with which the latent space is clustered. On the other hand, even though
binned mutual information is not a good estimate of the actual mutual information, it also tracks
the amount of how well the representation is clustered in the same space. As a result, it is natural
to implement a more direct way to identify clustering as a proxy to estimate mutual information.
We propose to use a density-based clustering technique, known as DBSCAN (Ester et al. (1996)).
Density-based clustering methods, more precisely DBSCAN, provides a principled way of formal-
izing the notion of what we call a cluster. DBSCAN finds the number of dense regions in the latent
space based solely on its neighborhood graph. Suppose that the latent space is a constellation with
dense regions separated by sparse areas. DBSCAN discovers clusters by giving the same labels to
closely packed points and marking sparse points as outliers.

Quantifying density of the space is controlled by two main hyperparameters, namely ε-neighbor
or -radius and minimum number of points (minPts). A single object is called a core-point c if it
contains at least minPts points within an ε-radius, counting itself. Objects that are within ε-radius of
a reference point p are said to be directly reachable by p. A point z is said to be reachable by c if there
is a path from the core point. In other words, for a given sequence of points (p0, ..., pi, pi+1, .., pz),
we must have p0 = c, pz = z, and pi+1 must be directly reachable by pi. This is illustrated in fig 1,
where point z is reachable since q bridges a connection from the core point c. At the beginning of
the DBSCAN, randomly picks a point in the latent constellation that has not been visited. It checked
whether it is a core point. If it is a core point, then it checks which other points are reachable by c.
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Every object within this group is given a cluster label. Points which are not core or reachable by any
core points are labeled as noise.

The time complexity of DBSCAN is at most O(n2), where n is the number of data point. If an in-
dexing structure is used, such as kd-tree, the time complexity can be as low asO(n log n) (Han et al.
(2011)). For the purpose of estimating mutual information, we should not discard any noise points
as they contribute to the measurement by increasing the entropy of the representation. Therefore, we
set the minPts to be 1, which allows each isolated point to be a core point even if there is no other
point within its ε-radius. Thus, each isolated point increases the cluster count by 1. It is important
to note that with the minPts parameter set to 1, the number of clusters identified by DBSCAN is
simply equal to the number of connected components in an ε - neighborhood graph. Because of effi-
cient neighborhood indexing in DBSCAN, the number of clusters and clustering labels are estimated
much faster than traditional graph-based methods for computing connected components. Once the
clusters are found, we can estimate the entropy.

To measure the amount of clustering, which we use as the proxy of I(X;Tl), we propose two meth-
ods. The first one is simply log(# clusters). For the second estimate, we first find the maximum
distance di between points within a cluster for the ith label. If the cluster label only contains 1 point,
then we assign di = ε. We assign a probability of pi = di/Σidi for each ith labeled cluster. Fi-
nally, we compute the entropy Hclusters = −Σipi log pi. We compare our estimates against binned
mutual information at different bin sizes over the course of training.

3 RESULTS

Figure 2: Evolution of approximate MI measures across training epochs for the Shwarz-Tishby
model. Each column represents a different layer of the network, whereas each row represents a dif-
ferent approximation technique for Mutual Information. Top row depicts log(# of clusters), middle
row shows the clustering entropy and bottom row shows the binned MI estimates. Left to right, the
columns represents Layer 2,3 and 5, containing 7,5 and 3 hidden neurons respectively.
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4 EXPERIMENTS

We conducted our experiments on two different datasets. The first one uses the same data set as that
of Shwartz-Ziv & Tishby (2017) for which the mutual information trajectories over the course of
training have been well-characterized previously. It consists of a binary classification task on a 12-
dimensional input using a fully connected DNN. The architecture has six layers (12–10–7–5–4–3–2)
and tanh non-linearities only. We measured the mutual information at several intermediate layers
of the network. We compared our estimates to I(X; Bin(Tl)), which we know the behavior of.

For the second experiment, we utilized the MNIST dataset. We followed the experimental proto-
col of Saxe et al., who trained a fully-connected DNN on MNIST with tanh non-linearities. The
architecture comprised five dense layers of size 784-1024-20-20-20-10 successively.

4.1 SZT MODEL

Figure 2 depicts the estimated clusterability measures, namely (i) logarithm of the number of densely
connected components or clusters in the representation and (ii) entropy of clusters, over the course
of training at different epsilon thresholds. As can be seen from the figure, both these measures
capture the trends of binned MI fairly accurately. Consistent with Tishby’s observations, binned
MI does exhibit a compression phenomemon, where it gradually begins to decrease during training.
However, as pointed out by Ziv et al., this compression is simply a result of progressive geometric
clustering of internal representations. This geometric phenomenon is visually depicted in Figure 3.

Figure 3: Scatter plots during different training epochs illustrating the clustering phenomenon in
Shwarz-Tishby model

4.2 MNIST FULLY-CONNECTED NETWORK

Figure 4 shows the mutual information trajectories of the penultimate layer containing 20 hidden
neurons. Again, we observe a similar trend. Beyond 1000 epochs, both the binned MI and the
clusterability-based MI estimates start to gradually drop. This provides further evidence for the
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observation that evolution of binned MI or the entropy of internal representations is simply tracking
clusterability of internal representations.

A critical hyperparameter of the proposed approach is ε, which determines the neighborhood radius.
At present, we do not have a principled way of choosing this parameter. Heuristically, we examined
the histogram of pairwise distances between the representations at the zero-eth epoch to identify the
lowest 5 percentile cut-off and estimated the clusterability measures in the vicinity of this threshold.
However, a more formal approach for determining ε is needed. We leave this exploration for future
work.

Figure 4: Evolution of approximate MI measures across training epochs for the Saxe et al. MNIST
network in the penultimate layer with 20 hidden neurons

5 CONCLUSION

In this work, we presented a novel approach to estimate mutual information that relies solely on the
neighborhood graph of internal representations. We employed density-based clustering to quantify
clusterability of the induced graph structure. We demonstrated that notions of clusterability captured
by this graphical perspective closely follow the trajectory of mutual information over the course of
training. More importantly, the proposed method scales only linearly in dimensionality of hidden
representations and is thus likely to scale much better on real-world datasets. Approximate MI
estimation methods can afford an information-theoretic understanding of learning dynamics in larger
networks. In future, we want to investigate the feasibility of using this estimation technique on state-
of-the-art networks and real-world recognition datasets. Consequently, with this method, we hope
to probe open questions about the relationship between compression/clustering and generalization.
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